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¢.  lntroduction

Although much is known about the microstructure of
semi-crystalline polymers, there i:z surprisingly little published work
dealing with their physical properties in a quantitative way. As
pointed out previously (1), they show remarkable djifferences in
ductility. High-density polyethylene has a natural draw ratio of
about 10X whereas trans-polyisoprene has a natural draw ratio of only
about 3X. Other examples are given below. These differences do not
seem to be due solely to differences in crystallinity. Indeed., the
more crystalline materials appear to have generally higher natural
draw ratios, contrary to expectation. It has been suggested, instead,
that the extensibility of crystalline polymers is related to the
degree of molecular chain folding within the crystallites;
highly-folded chains being capable, at least in principle, of large
extensions (1,2).

A second important property of crystalline plastics is their
yield stress, i.e., the maximum stress that they can withstand before
the onset of general plastic deformation. Again, although different
polymers show markedly different yield stresses, there does not appear
to be a generally-accepted connection between the microstructure and
resistance to yielding. Some comparative measurements of yield and
draw stresses have therefore been made for a number of common
semi-crystalline plastics, over a broad temperature range. They are
reported here, and compared with predictions of a simple theoretical
model, in which drawing is attributed to stress-induced "melting”.

The principal factors affecting the yield and draw stresses are thus




Tne Lelree T YyrETaorinlty o and Lhie freoe =nersy of melting.

A Zimloar RYPOoTiLssls wWas put forward by Juska and Harrison (3,49
They iocussed attentiosn on the maximum elastic strain energy that the
material can support betfore yielding, and implied that it is
correilated with the heat of fusion, but they did not propose a
quantitative relaticnship between the two parameters. Fopli and
Yandelik=srn 5% also summarized evidence in favor of stress-induced
meiting, at least in part, ac 2 mechanism of plastic yielding in
polyethylene, but again did not propose a quantitative relationship.

Hartman, Lee and Cole suggested a strain energy criterion for
vielding in semi-crystalline polymers, principally to account for the
temperature dependence (6). However, their treatment does not deal
with the mechanism of deformation considered here, by disrupting
crystallites.

Glassy polymers also yield, in a superficially similar way, but
on a smaller scale, confined to narrow shear bands or to microscopic
crazes, and at considerably higher stresses. A broadly-similar
nypothesis to that put forward here for plastic yielding and drawing
in crystalline polymers was proposed previocusly to account for the
phenomenon of crazing (7). A stress-induced transition from the
glassy state to a rubbery or liquid state was shown to account for
several aspects of crazing; notably, the relation between strength and
meclecular weight (91, and "environmental stress cracking’',i,e. the
tendency of certain fluids that are rather poor solvents tor the
polymer to lower the stress level at which crazes appear (7). We now

examine the hypothesis of a stress-induced phase




transition, i.e.., melting. as the mechanism of ductile deformation of

semi--rystalline polymers above their glass transition temperatures.

2. Experimental details

Several semi-crystalline polymers were employed in this study
high and low density pclyethylene (HDPE and LDPE), polypropylene (PP),
polycaprolactone (PCL), polybutene-1 (PB), trans-polyisoprene (TPI),
lightly-crosslinked trans-polychloroprene (TPC), and
polytetrafluoroethylene (FPTFE). Details of the materials are given in
the Appendix.

In each case the polymer was molded as a sheet, about 0.8 mm
thick, in a hot press at a temperature above the melting temperature
for a period of about one hour. The molded sheet was then cooled
rapidly to room temperature, about ZOpC.

Dog-bone-shaped samples, having a parallel-sided central portion
about 20 mm long and 2 mm wide, were cut from the molded sheets. They
were stretched at various rates in a tensile test machine, at
temperatures between -40°C and 160°C . A schematic relation between
tensile force and displacement of the ends of the sample is shown in
Figure 1 ,with sketches of the sample at different stages of
deformation.

Several physical properties were determined from the
experimentally-determined stress-strain relations: the yield stress gy
at which the tencsile force passed through a maximum, the draw stress
agq - sometimes appreciably lower than the yield stress, the natural

draw ratio A i.e., the constant extension ratio in the drawn part of

d ’




the sample as the neck propagated. transforming undrawn material into

rhe drawn state ., and the breaking stress, denoted O Results
obtained at room temperature are given in Table 1. In all cases,
stresses refer to the original (unstrained) cross-sectional area of
the sample.

Estimates of the degree of crystallinity ¢ of each sample were
obtained from measurements of the heat of fusion by DSC, using
reported values of the heat of fusion h of 100 percent crystalline

material. They are included in Table 1.




3. Experimentat results and discussion

ii) Nature of plastic yielding in crystalline polymers
Although the general pattern of plastic yielding has been
described many times, some features do not seem to have been pointed
out previously. The characteristic neck first appears at an angle 8
of about 55° to the direction of tension, rather than at 90°, as shown
in Figure 2a. This feature was particularly clear in harder materials
such as HDPE, PP, PCL, and TPI. It is in good agreement with the

criterion, cos 23 = - 1/3, given by Bowden (8) for neck formation

without change in one dimension, a condition imposed by the rigidity
of the still unyielded material on either side of the nascent neck.

Then, as the neck propagates, the constraint imposed by neighboring

material diminishes and the angle 3 changes to 900, Figure 2b.

In TPI, propagation of the neck could be seen to take place
intermittently, by periodic movement of a band of material from the
undrawn part into the drawn part, forming characteristic striations,
Figure 3. This process continued from the initial formation of a neck
until drawing was complete. It indicates that the drawing process is
not homogeneous but involves discrete portions of material, taken
successively to the fully-drawn state.

Similar details of the drawing process were not observable in
other polymers, like LDPE, which formed a neck more gradually, and at
significantly larger strains (5). Indeed, at low rates of strain,
below about 1 x 10—35_1, TPC, PB, and LDPE extended more or less

uniformly, without forming a visible neck.




(11) Physical properties
ctriking dirfferences were round in the physical properties of
the dirferent polymers. as shown by the results given in Table 1.

Values of the natural draw ratio A, ranged from 2 to 10. Yield

d
stresses ranged from 7 to 21 MPa at room temperature, and draw
stresses varied similarly., lying somewhat below the yield stress.

As the test temperature was varied, the draw ratio was found to
remain substantially unchanged but the yield and draw stresses
decreased sharply with increasing temperature. Typical relations are
shown in Figures 4 and 5. For several materials, the dependence was
approximately a linear one, Figure 4, and the yield and draw stresses
fell to zero at the melting temperature of the sample, somewhat below
the thermodynamic melting temperature, given in Table 1. For PP,
ULPE, LITZ and PTFE, the yield and draw stiresses followed a non-linecar
dependence on temperature, as shown in Figure 5, but they still fell
to zero at a temperature, obtained by extrapolation, close to the
melting temperature. We now turn to the physical interpretation of
these results.

(iii) Natural draw ratio, breaking extension, and recovery from the
drawn state

Employing the concept put forward previously, that drawing takes
place by straightening crystalline and amorphous molecular sequences,
the observed values of natural draw ratio ﬁdcan be interpreted in
terms of the number f of times that a molecule passes through the same

crystallite (1):

172, 1/2

l/Ad = (c/f) + (1 - ) /n (1)

where n denotes the number of equivalent random links between points
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ratics. They were approximately 1 for TPI, TFC, and FE. indicating

ilittle or 0 re-ent¥y intd the same <rystallite, and Z to 4 tfor LDFE,

ETFE, FTFP. and PFCL, indicating a limited amcount of molecular reversal

and re-entry. For HDEE the value of f was relatively iarse., about L1,
suggesting that 3 substantial degree of chain folding »courred in this
case:.  tut it o notewoarthy that HDEE was quite unusual in thils

rezpect, reflecting an nusually high natural draw ratio (1o,

After reaching the fully-drawn state, samples could then be
2xtended further. now homogeneously, until the breaking stress and
strain were reached. The extension at btreak was found to be generally
sbout twice as large as the extension attained in drawing. Thus,
HDPE, which had a natural draw ratio of about 10X, tinally broke at a
tensile strain of about 18, and PCL, which drew by a factor of 35X,
broke at an extension of about 10.

It is clear that substantial further rearrangement of
~rystalline and amorphous material can take place atter the natural
draw ratic has been reached. Previcusly it was proposed that the
natural draw ratic is that deformation at which molecules that happen
t¢ traverse a crystallite unfavorably, with thelr entangled Jjunctions
it ~sppozite sides and lying in the direction of the applied tension,
become fully stretched (1). Other molecules, more favorably situated,
will reach the fully-stretched state later. Thus, extensive molecular

rearrangement atfter the natural draw ratio is reached. permitting

urthzr extension f drawn material, is not incompatible

rt
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fe -t Je e i Sl niades 0T < yeTrmolion 1 trawn camples
LN ATILE. Wwhen -he tension was released, the immedlate recovery was
1Lt Tmalil, less than U percent of the imposed =2xtension. Un

warming, -he samples began to retract, as shown in Figure o, and

Yol ry was virtualily comprete at the melting temperatuars.

“hirre was one cutstanding exception, howevear.  Camples of FCL
e i omaon less reocovery, retaining more than one-haltf o1 Ll Imposed
-tral it rTne me.Ting point. This fteature 15 tentatlively attributed to

-

inusiaily Low molecular weight of the FCL sample, only about 40,00

M-l Extensive slippage ~f entangled molecules may well take place
:n thiz case during drawing. If this is so, then the intferred value

sf f far PCL, about 3, will be too high because the natural draw ratio
has been over-=2stlimated.
iiv) Theoretical interpretation cf yield and draw stresses

We consider first the relationship between the draw stress and the

“hermodynamic werik of melting. Qm' given by ¢11)
b7z 2 s hotl - TOT 0, (2)

wher= > 1s the fracticnal Jdegree of crystallinity, g is the density, h
is e he2at of fuzion of 150 pervent crystalline material, [ is the

rest tempsrature and lm is the crystal melting temperature. Values of

“rpage parameters sre Ziven in lable 1 for sach polymer.

5
-

naperimental vatues of the draw stress 74 Are plottced in Figure
waitnst calsulated valu=ss of the work of melting Um. The results
are -een to fall intos two groups: polymers with low wvalues of natural

qraw ratis show rather good agreement between draw stress and the work
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Jompared oo Thee work of melting, sy abour
JTe-firth as large in the case ot HDEE.

Zimilar conclusions are reached irf yield strezses are considered

instead of Jdraw stresses. Values of yield stress g are plotted
J
sgainst thie thermedynamic work of melting in Figure &. Again,

volymers with iow naturai draw ratlos, between - and 3. show

LALIZIACTory agrsement between yield atress and the worik o melting,

D
w0

WitIreas polymers naving hiegh ductility: for example, HDFE; have much
LuWwer yleld stresses for equivalent values of Qm
These differences between different polymers —can be attributed to

difrerent energies of deformation. even for the same yield and draw

stress. In the following section the work expended in drawing is
compared tc the free energy of melting. (A similar comparison is not

made for yielding because the yield stress depends significantly upon
the rate of stretching, as discussed later.)

Although significant differences are present, as pointed out
ibove, surprisingly good numerical agreement is obtained between

sbserved yield and draw stresses and the computed work <f melting for

3 number of poiymers. This empirical observaticon suggests that the
hypothesis of Juska and Harrisor. is basically correct. liowever, it 1is

thought that their estimate of the work required to bring about the

melting transtformaticn is inappropriate, as discussed beleow.
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iv) wWork e=xpand=sd in plastic drawing

M2 Dla

n

tic derformation cocurs, ensergy is expended in drawing,
given by the product of the draw stress and the extension accompanying
drawing,

U = odkAd - 1) . (3)
It is proposed here that the criterion for drawing is that this
mechanical work is enougnh to disrupt the crystallites completely,
i.e., o= U . This criterion differs somewhat frsm that propesed by
Juska and Harrison (3,4), who employed the strain energy stored in the
material at the onset of yielding as a measure of the work of melting.

Now, because several polymers have values of Ad of the order of 2
to 3, the corresponding work of drawing will lie between o4 and ng ,
Equation 3. Thus, the degree of agreement found between the draw
stress itself and the work of melting for these polymers is not so
surprising. On the other hand, for PP, LDPE, and HDPE, with values
of Ad ranging between 4.5 and 10, the work of drawing U becomes a
larger multiple of the draw stress and hence the draw stress itself
will be a smaller fraction of the thermodynamic work of melting Qm, as
is observed (Figures 7 and 8).

Approximate wvalues of the effective draw strain gg can be deduced
by comparing measured draw stresses with those predicted by Equations
2 and 3. They are listed in Table 2 and compared with the actual draw
strains for each polymer. As can be seen, although the two values are
of the same order, the effective draw strain and thus the work
required to melt the polymer is generally lower than the work actually
expended in drawing. In other words, the amount of mechanical work
expanded in drawing is similar to, but generally larger than that

needad to melt crystalline material, by a factor between 1X and 4X.
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W T :SSibie reasons oy this llscrepansy oan Le oot rIrward.
Wori U =lastic dercrmatlion accompanyings drawing has not b==n taken

inte account, although it is clearly present when drawn material is
heated to the melting point and retracts to the unstrained state. And
it is possible, at least for materials well below the melting point,

rhat they recrystalliizce during drawing, before reaching the

tally-drawn state. In this case, work of melting must be provided
sore “nan once Jduring drawing. Unrortunately. neither of these
=i1t=.%s are —as.iy quantified. Either of them would cause the work of

irawing to exceed the value calculated from Egquations 2 and 3.

23!

ffect of rate of deformation on yielding

It is helpful, again. to consider the polymers studied here in two
Zroups. The first, those polymers having values of natural draw
ratic between ¢ and 3 showed very little dependence of the yield
stress and draw stress on rate of deformation, Figures 9 and 10.
Indeed, it should be noted that vield stresses and draw stresses were
gquite similar for these polymers.

The second group of polymers, having large values o©f natural
iraw ratio, showed a steady increase in yield stress with rate of
deformation, Figure 9. At first sight, this dependence 1is
inconsistent with the thermodynamic concept of stress-induced melting,
vakling place, in principle, at equilibrium. However. the work of
detormation  employed here is obtained from drawing, and comparison

is made of draw stress and draw ratlo with theoretical predictions,

rather than yield stress. And the draw stress was found to be

\d

5
i

53 zensitive to rate of deformation, Figure 10. It is therefore
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TIUSGT AT a4 pronounced dependencs [ ovizld stress n rate of
1mDrmAanion loes NIt o vitiate the propossd mechanlism oI drawing by a
stress-induced phase transition. But, clearly, further study is

requlred of differences between yield stress gy and draw stress g4
They are particularly different for polymers with high natural draw
ratics, stretched at high rates.

tvii; Folytetrafluorcethylene, FPTFE

.,

Yi=1ld and draw stresses for FTFE were remarkably iow 1n comparison

w

with =2stimated values ¢f the work of melting, Flgures 7 and 5. These

results cannot be attributed to an excesively high degree of ductility

for FTFE. On the —<ontrary, the natural draw ratic was relatively low,
about 3.3Z. Iinstead, it must be hypothesised either that the mechanism

of vielding is distinctly different for PTFE, or, as seems more

i

ikely. that the effective melting temperature at which the structure
flows under stress is much below the reported melting temperature.

Intermediate melting transitions have been reported for PTFE (12,13).
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The following conclusions zare cotain=d:

Several polymers, with low values of natural draw ratic, show
Zcod agreement between measured yield or draw stresses and those
calcoulated from the work of melting. This empirical observation is
regarded as good =vidence for the basic Juska and Harrison hypothesis,
that yielding is asscciated with stress-induced melting.
it is proposed that the work of drawing is primarily e=xpended in
meeting the thermodynamic requirements of melting. In accordance with
this concept, the product 0484 of the measured draw stress and natural
draw strain is found to» be of the same order as the free energy of
melting. Numerical values range from 1X to 4X of the theoretical
amount of work required to melt the material. Possible reasons for
the discrepancy are that additional energy 1s expended in elastic

deformation, and that recrystallization occurs during drawing.

Attention is focussed on draw stress and work of drawing, rather

than yield stress and work of yielding. For polymers with low
natural draw ratios. between “ and 3. the distinction 1is unimportant
because the yield stress and draw stress are quite similar. For

polymers with higher natural draw ratios, notably low- and high-
density polyethylenes, the yield stress is considerably higher than
the draw stress, and more so at higher rates of deformation. Indeed,
the dependence of the yield stress upon rate of straining, and upon
time under load (14), suggests that it is not amenablz to direct

thermodynamic interpretation.
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Appendix

The following materials were used in the experiments.

High-density polyethylene (HDPE): Microsuntec R340P, from Asahi-

Kasei Ind., Japan. Density, 0.955 g/ml; melt index, 7 g/10 min.

Low-density polyethylene (LDPE): Flothene G801, from Asahi-

Kasei Ind., Japan. Density, 0.920 g/ml; melt index, 20 g/10 min.

Polypropylene (PP): PP 4092, from Exxon Chemical Company.
Density, 0.90 g/ml.

Polycaprolactone (PCL): PCL-700, from Uniorn Carbide Corp. Density,

1.149 g/ml at 20°C; wt. av. mol. wt., 4 x 104 g/mole.

Polybutene-1 (PB): PB 8240, from Shell Chemicals.

Polytetrafluoroethylene (PTFE): Hoerst TFM 1600, from Pfaudler-

Edlon Products. Density, 2.17 g/ml.

Trans-polyisoprene (TPI): Trans-PIP 301, from Polysar Limited,
Canada.
Trans-polychloroprene (TPC): Neoprene HC, from E. I. duPont de

Nemours and Co. This material was lightly crosslinked, using
the following mix formulation, by heating for 1 h at 150°C.
Neoprene HC, 100; extra light calcined magnesia, 4; zinc

oxide, 5; Permalux (accelerator), 0.5; Antioxidant 2246, 1.
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Table 2: Comparison of measu

effective value eg*

red draw strain eg(= Ag - 1) with

, calculated from draw stress and

work of melting, Eq

Polymer

PB 1.
TPI 1.
TPC 1.
PTFE 2.
LDPE 3.
PCL 4.
PP 5.
HDPE 9.

8draw strain not fully

uations 2 and 3.

ed eg”
0 1.0
3 0.9
7 0.9
3 4.5
5 2.5
34 1.0
0 3.0
2 3.0

recoverable, see text.
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Figure Legends

Figure l: Relation between tensile stress and mean elongation
ratio, given by the overall length of the sample
relative to its initial length.

Figure 2: Formation and propagation of a neck in trans-
rolyisoprene (TPI).

Figure 3: Striations in drawn trans-polyisoprene (TPI).

Figure 4: Yield stress Cy (open points) and draw stress 94
(filled-in points) for PCL (O,®) and TPC (g,m),
plotted against test temperature T. Rate of
extension: & = 0.015 s~1

Figure 5: Yield stress Oy (open points) and draw stress 94
(filled-in points) for HDPE (A,A) and LDPE (V,V),
plotted against test temperature T. Rate of
extension: & = 0.015 s~1

Figure 6: Residual strain e vs temperature for several polymers,

drawn at 20°C to strains exceeding their natural
draw strain and then released and heated.

Figure 7: Draw stress 03 vs free energy Up of melting. @, TPI;

o, PCL; ¢, PB; ®, TPC; X, PP; ¥, LDPE; A, HDPE;

», PTFE. WFA& &rokan y{ﬂ& reprtsacﬁ q& = ij ,

Figure 8: Yield stress Jy vs free energy Unp of melting.

O, TPI; 0, PCL; ©, PB; O, TPC; +, PP; vV, LDPE, A, HDPE.
— 0. :
TRe Arokem Lime reprzse«fg T, =

B m 3

— ———e
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Yield stress :, at 25°C vs rate of extension e.
+, PP; ', HDPE; O, PCL; O, PB; », PTFE;(OTPI; O, TPC.

Draw stress oJg at 25°C vs rate of extension e.
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